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Abstract. Understanding and predicting how tourists move through a
city is a challenging task, as it involves a complex interplay of spatial,
temporal, and social factors. Traditional recommender systems often rely
on structured data, trying to capture the nature of the problem. How-
ever, recent advances in Large Language Models (LLMs) open up new
possibilities for reasoning over richer, text-based representations of user
context. In this study, we investigate the potential of LLMs in inter-
preting and predicting tourist movements using a real-world application
scenario involving tourist visits to Verona, a municipality in Northern
Italy, between 2014 and 2023. We propose an incremental prompt engi-
neering approach that gradually enriches the model input, from spatial
features alone to richer behavioral information, including visit histories
and user-cluster patterns. The approach is evaluated using six open-
source models, enabling us to compare their accuracy and efficiency
across various levels of contextual enrichment. Results show that incorpo-
rating contextual factors improves predictions, resulting in better overall
performance while maintaining computational efficiency. The analysis
of the model-generated explanations suggests that LLMs mainly reason
through geospatial proximity and the popularity of points of interest.
Overall, the study demonstrates the potential of LLMs to integrate mul-
tiple contextual dimensions for tourism mobility, highlighting the possi-
bility for a more text-oriented and adaptive recommender system.

Keywords: Tourist Recommender Systems - Large Language Models -
Next POI Prediction.

1 Introduction

Tourist Recommender Systems (T-RSs) have gained increased attention in recent
years, supported by the availability of a huge amount of information produced
by tourists in the form of User Generated Content (UGC), and the rise of sophis-
ticated analysis tools based on machine learning (ML) and deep learning (DL)
techniques. Understanding tourists’ behavior and predicting their future move-
ments is crucial for producing meaningful suggestions that will be appreciated
and accepted by the tourists themselves. However, this is a challenging task, as
it involves a complex interplay of spatial, temporal, and social factors, such as
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individual user preferences and interactions between different tourists visiting
the same area. Moreover, in many real-world situations, touristic applications
deal with anonymous or occasional users interacting with a specific application
for the first time during each trip or visit. Therefore, in the tourism domain,
the development of personalized suggestions becomes even more challenging,
often requiring a more flexible form of personalization, such as tailoring recom-
mendations to user clusters or broader user categories rather than to individual
users [15].

Several different T-RSs have been proposed in the literature, relying on the
collection of structured data to capture the nature of the specific problem at
hand, which will, in turn, be used to train more or less sophisticated specialized
ML or DL models. These approaches typically fall into the category known as
next-Pol prediction, which, given the tourist’s current position and the sequence
of attractions already visited, attempts to predict the next location or place the
user will visit [7]. Given this nature, the next-Pol recommendation is usually
treated as a sequential recommendation task; therefore, in the past, T-RSs have
frequently applied ML and DL techniques typically developed in the context of
time-series forecasting, starting from the use of recurrent neural networks [3],
passing from reinforcement learning approaches [I6] and attention-based meth-
ods [TI4], towards the more recent transformer-based models [28]. However, re-
cent advances in Large Language Models (LLMs) open up new possibilities for
reasoning over richer, text-based representations of user context. Moreover, the
exploitation of foundational pre-trained models enables the possibility of making
meaningful predictions without the need for training a model on specific data,
making such approaches applicable even in the absence of historical data or in
the presence of a very limited amount of it.

In this paper, we investigate the potential of LLMs in interpreting and fore-
casting tourist movements in a next-Pol prediction task by comparing six open-
source LLM models and experimenting with an incremental prompt engineering
approach to incrementally enhance the input provided to the models. In par-
ticular, starting from the simplest description of the past user visits, it is then
enriched with spatial and temporal features, as well as user-cluster preference
patterns. The comparison is performed with reference to both accuracy and
efficiency using a real-world application dataset that includes tourist visits to
Verona, a municipality in Northern Italy, between 2014 and 2023. Three base-
lines are considered: random choice, spatial-proximity choice, and popularity-
based choice. The obtained results confirm that incorporating contextual factors
improves predictions, resulting in better overall performance with respect to
the baselines, while maintaining computational efficiency. We also perform an
analysis of the explanations provided by the six models about the provided sug-
gestions. This analysis reveals that LLMs primarily reason through geospatial
proximity and occasionally consider the popularity of points of interest. Over-
all, the study demonstrates the potential of LLMs to integrate multiple con-
textual dimensions for tourism mobility, highlighting the possibility of a more
text-oriented and adaptive T-RS.
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The remainder of the paper is organized as follows: Sect. [2] summarizes some
related work about T-RS and the use of LLM in such context. Sect. ] formalizes
the next-Pol prediction problem, while Sect. [d] introduces the applied methodol-
ogy, and Sect. [5] presents the experimental results. Finally, Sect. [] concludes the
work and proposes some future extensions.

2 Related Work

Next-Pol Prediction. The next-Pol prediction has been widely studied as a
sequential recommendation problem that combines spatial and temporal infor-
mation. Most of the techniques rely on recurrent neural networks. For instance,
the study presented in [3] proposed a model that integrates the location interests
of similar users and contextual information, such as time, current location, and
friends’ preferences. In [14], the authors introduced STAN, a spatio-temporal
attention network that explicitly models point-to-point interaction among non-
adjacent locations through a bi-layer attention mechanism. By replacing tra-
ditional hierarchical gridding and explicit time interval encoding with a linear
interpolation, STAN enhances the representation of long-range spatial-temporal
dependencies while remaining focused on user-specific patterns. The work [28]
further enhanced this line of research with GETNext, which incorporates a global
trajectory flow map into a transformer architecture. By combining global tran-
sition patterns, users’ general preferences, spatio-temporal context, and time-
aware category embeddings, the model captures inter-user dependencies and
alleviates cold-start issues. A different direction was explored in [16], where
the next-Pol task was formulated as a reinforcement-learning problem (QEXP).
Their model leverages tourists’ past experiences and spatial proximity to rec-
ommend diverse and geographically dispersed Pols, addressing new-user, new-
item scenarios, and popularity biases. Overall, these works mark a shift from
purely sequential models toward context-aware approaches that integrate spa-
tial, temporal, and behavioral signals, providing the basis for more flexible and
interpretable language-based representations of trajectories.

Context- Aware Recommendation. Context-aware recommender systems en-
hance personalization by integrating contextual factors such as time, location,
and weather into the recommendation process [III93T]. Specifically in the tourism
domain, incorporating spatio-temporal and environmental context has proven
particularly effective. For instance, the authors in [30] consider both the time
of day and the geographical position of attractions, improving next-Pol pre-
diction accuracy over non-contextual baselines. Similarly, integrating temporal
and environmental variables such as weather has been shown to improve both
the crowding of Pols [I7] and the sustainability of the suggested itinerary [5].
Recent studies have moved toward dynamic and user-adaptive contexts, where
both user preferences and item characteristics evolve over time. Neural network
architectures [32] and sentiment-aware models [1226] have been proposed to
refine the prediction of tourist interest when it changes dynamically. Despite
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these advances, most systems remain feature-driven, relying on fixed contex-
tual representations and limited reasoning capabilities. Consequently, current
context-aware recommender systems struggle to integrate heterogeneous signals
or explain their decisions. Overcoming these constraints motivates the explo-
ration of Large Language Models (LLMs), which can flexibly reason over spatial,
temporal, and behavioral contexts through natural language understanding.

Large Language Models. Large Language Models (LLMs) are transformer-
based, pre-trained models containing billions of parameters, trained on mas-
sive amounts of text data. Some of the most popular models are GPT-3 [2],
GPT-4 [18], LLaMA [21], and Gemini [20]. While initially developed for lan-
guage understanding and generation, their emergent capabilities have enabled
successful applications in many other domains. A key characteristic of LLMs is
their in-context learning (ICL) ability [2]. Instead of requiring fine-tuning, an
LLM can adapt to a new task through natural-language prompts that combine
task instructions and examples. The prompt engineering plays a crucial role in
the model performance. Because of this, the chain-of-thought (CoT) prompt
strategy [25] becomes a basis for several prompting extensions [T0J24]29], as it
encourages the model to reason explicitly through intermediate steps before pro-
ducing an answer. These advances suggest that LLMs are not limited to linguistic
tasks, but can be leveraged for structured reasoning on sequential data, includ-
ing human mobility. Recent studies, such as UrbanGPT [I3] and Traj-LLM [I1],
demonstrate that LLMs can capture spatial and temporal dependencies and infer
movement patterns when provided with well-designed contextual prompts. Nev-
ertheless, the application of LLMs to tourist behavior prediction remains quite
unexplored. A recent study, LLM-Mob [23] showed that human mobility can be
effectively modeled by treating trajectories as language sequences and leveraging
ICL for interpretable predictions. While this marks an important step toward un-
derstanding mobility through language, it does not yet consider tourism-specific
trajectories or the role of contextual enrichment in improving predictive qual-
ity. Building upon these insights, this work explores whether LLMs can both
predict and explain tourist behavior when enriched with spatial, temporal, and
behavioral context.

3 Problem Statement

This section formalizes the preliminary notions and the problem of interest. First,
we need to define the concepts of tourist visits and tourist trajectories.

Definition 1 (Visit). A tourist visit is a tuple v = (p,t,£) where p is a Pol
identifier, t is the timestamp of the visit, and £ is the location of p in terms of
latitude and longitude £ = (lat,lon).

In this paper, we assume that a predefined set of tourist attractions or Pols
has been identified, and we collectively denote the set of all available Pols from
which a tourist may choose by the symbol P.
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Based on the concept of a tourist visit, we define a tourist trajectory as a
sequence of visits made by the same user.

Definition 2 (Trajectory). A tourist trajectory is a sequence of visits per-
formed by a tourist T = (v1,...,vy), where each v; is a tourist visit and the
following constraint holds: Yv;,v; € 7.1 < j At < w;.t, where v.t denotes the
timestamp associated with the visit v.

Given such preliminary definitions, a common challenge in the development
of a T-RS is to predict which is the next Pol the tourist will visit. This problem
is typically known as next-Pol prediction and can be formalized as follows.

Definition 3 (Next-Pol Prediction). Given a set of available Pols P and
a partial tourist trajectory T = (v1,...,vym) performed by a tourist till the time
Um-t, the goal is to predict the next Pol p € P that the tourist will visit.

In the following, the partial tourist trajectory 7 = (v1,. .., vp,) till the current
tourist position v,,.¢ will be referred to as the sequence of historical visits. These
concepts are also represented in Fig. |1} where each historical visit is characterized
by a timestamp (represented by a clock), a location (represented by a location
mark), and a Pol identifier, as formalized in Def.

historical visits
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current visit next Pol

[

Fig. 1. A partial trajectory for predicting the next Pol from past visits.

The next section outlines the methodology, including the pipeline overview,
prompt design, and approach for identifying tourist preferences.

4 Methodology

The overall methodology followed in this paper is depicted in Fig. It be-
gins with the presence of a collection of records about historical visits made by
tourists (D1), on which an aggregation and ordering procedure T1 is applied to
reconstruct the available set of original tourist trajectories (O1). A filtering is
applied to them (T2) in order to discard trajectories that are too short to be
relevant for the problem (i.e., they consist of only one or two visits). The set
of selected trajectories (02) is then used as input for the two subsequent tasks:
one is the identification of tourist preferences (T3), which will be described in



6 A. Dalla Vecchia et al.

Sect. and the other is the identification of historical visits to use as input
for the LLM. In particular, the identification of historical visits involves cutting
the original trajectories at a given position, known as the anchor point.

D1 Records about Reconstruction of | 1,
past visits trajectories
Original tourist o1
trajectories
Filtering of relevant
" . T2
trajectories
. Selected tourist anchor point
K-nn clustering . . . D2
trajectories 02 l position

pre‘l;(;:::ci% Historical visits | 03

c1 Spatial context °
C2 | Temporal context
Prompt LLM
04

Fig. 2. Overview of the pipeline methodology.
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Definition 4 (Anchor point). Given a complete tourist trajectory T = {(vy, ...,
vn) performed by a tourist u, an anchor point is an index i € N .1 <i <mn
which identifies an intermediate position inside T in terms of a distance from
the end of the sequence. For instance, if i = 1, it means that the anchor point is
located in the penultimate position of the sequence, while i = (n — 1) denotes the
first position in the sequence.

The anchor point determines the length of the subsequence of visits used to
model the user’s behaviour before predicting the next Pol. For example, when
the anchor point is set to 1, the model predicts the last Pol to be visited using all
previously visited Pols except the last one. The extracted set of historical visits
(03), obtained from the selected tourist trajectories (O2) by considering only the
Pols visited before the specified anchor point (D2), is used to build the prompt
for the LLM (O4), which will be enriched with other contextual information. In
particular, we consider three incremental contextual prompt information (i.e.,
C1, C1+C2, or C1+C2+C3), which will be described in Sect. The LLM
(T4), when queried, will provide two outputs: the next Pol suggestion (O5) and
an explanation for that suggestion (O6).
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4.1 Identification of Touristic Preferences

To refine the recommendation process, tourist preferences are inferred by cluster-
ing the set of visited Pols (T3). The aim is to identify classes of typical tourists
from historical data, where each class reflects distinct preferences for Points of
Interest. Once a next-Pol prediction is made for a tourist, the visits completed
up to the anchor point can be used to classify such a user and estimate their
preferences for the remaining Pols. To identify the possible classes of tourists,
each tourist record in O2 is transformed into a binary vector, where each po-
sition corresponds to a Pol and takes the value 1 if the Pol was visited and
0 otherwise. For instance, a user who visited Pols 2, 3, 4, 7, and 8 would be
represented by the vector (0,1,1,1,0,0,1,1,0,0). These vector representations
are then clustered using the k-means algorithm, and as a result, the centroid of
each cluster is again a vector where each position indicates the popularity of the
corresponding Pol, measured by the number of tourists in that cluster who vis-
ited it. In these terms, each centroid identifies distinct tourist behavioral profiles
and provides additional information for the LLM prompt, enabling personalized
predictions that align with demonstrated behavioral patterns, as described in
the following section.

4.2 Prompt Design

This section defines five incremental prompting strategies that progressively en-
rich the contextual information provided to the model. Each prompt includes at
least four main components: (i) wisited Pols, listing the attraction already vis-
ited in chronological order (i.e., historical visits till the anchor point), (ii) current
location, corresponding to the most recently visited Pol, (iii) task instruction,
specifying the expected output, i.e., “Suggest the 5 most likely next Pols con-
sidering typical tourist movement patterns in Verona’; and (iv) output format
which constrains the model to reply only with a JSON file including the fields
prediction, representing the identifiers of the recommended Pols, and reason
providing a brief explanation of the prediction. Given these four components
common to all strategies, each specific strategy can be enriched as summarized
in Tab. [1] and described in more detail in the following paragraphs.

(A) Base strategy. The first prompting strategy serves as the foundational
LLM baseline, since it does not include any contextual information beyond
the chronological sequence of visited Pols. The model receives the ordered list
of previously visited locations (i.e., chronological_history) and the current
Pol, both represented exclusively by their canonical names. The corresponding
prompt template is shown in Tab. [I] denoted by the strategy A.

(B) Spatial strategy — This prompt extends the base strategy by introducing
explicit spatial information. In addition to the sequence of visited Pols, the model
is provided with the coordinates of the current location and a list of the ten
nearest Pols, sorted by distance, i.e., top_10_nearest_with_distances. These
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Table 1. Overview of the four hierarchical prompting strategies (A-E): (A) the base
strategy which provides only the sequence of visited Pols, (B) the inclusion of spatial
context, (C) the addition of temporal information, and (D),(E) the integration of tourist
preferences derived from clustering analysis in two different way. Each prompt includes
structured instructions and output formatting constraints.

Prompt | Strategy
Cluster typical preference: {the_most_preferred_PoI} D
Cluster typical preferences: {cluster_prefs_with_freqs} E
Visited PoIs: {chronological_history} AB
Visit history with timestamps:

{chronological_history_with_time} C,D,E
Current location: {current_poi} A
Current location: {current_poi} (GPS: {lat}, {lon}) B,C,D,E
Current time: {day_of_week}, {hour}:{minute} C,D,E
Nearest PoIs: {top_10_nearest_with_distances} B,C,D,E
Suggest the 5 most likely next Pols considering typical tourist movement A

patterns in Verona.

Suggest the 5 most likely next Pols considering:
- Physical distance from current location
- Typical tourist route patterns in Verona
- Walking accessibility constraints (2km radius) B

Suggest the 5 most likely next Pols considering the current time C
({time_period}), the temporal tourist patterns in Verona, suggest 5 most likely
next Pols.

Suggest the 5 most likely next Pols considering:

- Cluster preferences and typical behavior

- Current time ({time_period}) and temporal patterns
- Spatial proximity and walking constraints

- Historical visit sequence. Suggest 5 most likely next Pols that align with D,E
this tourist’s behavioral profile.

Respond ONLY in JSON format: {"prediction": ["PoIl", "PoI2", "PoI3", "PoI4", A,B,C,D,E
"PoI5"], "reason": "brief explanation"}

additions enable the model to reason about spatial proximity and typical tourist
movement patterns in Verona. As illustrated in Tab. [1| (strategy B), the task
instruction is refined to consider physical distance, route patterns, and walking
accessibility constraints, while the reason field in the output is expected to
provide, correspondingly, a brief spatial justification of the prediction.

(C) Spatio-temporal strategy — This strategy builds upon the spatial prompt
and integrates temporal information. The history of visited Pols is enriched with
the duration of each visit (i.e., chronological_history_with_time), while the
current context includes the day of the week, the hour (in 0-23 format), and
the minutes of the current moment. Accordingly, the task instruction is refined
to require the model to account for temporal dynamics, including time-of-day
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classification (i.e., morning, afternoon, or evening). The temporal context is also
reflected in the reason field of the output, which is expected to provide brief
spatio-temporal reasoning. This strategy is denoted as C in Tab. [I]

(D) Spatio-temporal-popularity strategy — This prompt strategy is based on
the previous one by integrating behavioral information derived from the k-means
clustering analysis introduced in Sect. 1.1} Each tourist trajectory is assigned to
a cluster that characterizes the tourist preferences for each Pol. This preference is
explicitly embedded in the LLM prompt (strategy D in Tab.[I)) by including only
the most popular Pol of the cluster. The task instruction and output format are
further refined to ensure that the model reasoning reflects the tourist’s behavioral
profile, combining spatial, temporal, and preference-based information.

(E) Spatio-temporal-preference strategy — The final prompt strategy is
based on (C) strategy and is similar to the (D) one. It integrates the behavioral
information derived from the k-means clustering analysis introduced in Sect.
by assigning to each cluster the preference for each Pol. These preferences are
explicitly embedded into the LLM prompt, as in the previous case, but by chang-
ing the Cluster typical preference field, which now provides the preference
of each remaining Pol in decreasing order, rather than the single most preferred
Pol. The task instruction and output format are equal to the (D) strategy.

4.3 Evaluation Metrics and Quality Assurance

The framework employs a comprehensive evaluation protocol that encompasses
multiple metrics commonly used to assess the quality of recommendations. Specif-
ically, the model performances are evaluated using Top-1 Accuracy (Acca),
Top-k Hit Rate (HRay), and Mean Reciprocal Rank (M RR). Each metric is
formally defined as follows.

N
1 .
Acear = 53 o =3}

i=1

where N is the number of test instances, y; denotes the ground-truth next Pol,
g}z@ ) represents the j-th ranked prediction, in this case the first one. This metric
measures the number of cases in which the first system recommendation exactly

matches the true next Pol.

N
1 . N
HRar =+ % Uy e {7},

i=1

where {QZ{U, o ,gjgk)}} represents the list of the top-k recommendations for in-
stance i. H Ray, relaxes the Accq1 metrics by checking if the correct item appears
among the top-k, better reflecting tourism scenarios where users consider several
suggested Pols rather than just one.
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1L 1
MRR = —
N;ranki’

where rank; is the rank position of the first relevant results for the correct Pol
y; in the ranked list of predictions, if y; does not appear in the list, 1/rank;
is set to 0. M RR quantifies how highly the correct item is ranked on average,
assigning higher scores when the correct Pol is at the top of the list.

5 Experiments

All experiments were conducted on Leonardo, the Italian supercomputer oper-
ated by CINECA, under the IscrC_ LLM-Mob project allocation [4]. The Booster
module of Leonardo is equipped with four NVIDIA A100 GPUs (64 GB VRAM
each, 256 GB total) interconnected via NVLink, and powered by dual-socket
Intel Xeon Sapphire Rapids CPUs with 56 cores per socket (112 cores in to-
tal) and 512 GB of DDR5 system memory. This high-performance configuration
enabled efficient large-scale parallel processing and multi-instance GPU deploy-
ment through the Ollama framework. The complete framework is implemented
in Python, featuring comprehensive logging, automatic checkpointing, and sup-
port for parallel execution and append mode to enable incremental experiments
on large datasets. All experimental code, preprocessing pipelines, and analysis
notebooks are available as open-source software at https://github.com/4nnin
a/llm_tourist_trajectories| ensuring full reproducibility.

5.1 Experimental Protocol and Anchor Selection Mechanism

Our evaluation employs a systematic approach, utilizing the VeronaCard dataset,
which provides comprehensive tourist mobility trajectories from 2014 to 2023.
The dataset contains about 2.7M visits performed by about 570K different
tourists, i.e., different VeronaCards, covering 18 Pols in Verona downtown.

The approach relies on three main components. First, user segmentation is
achieved via k-means clustering applied to user-Pol interaction matrices, as dis-
cussed in Sect.[£:I] enabling cluster-specific prompting strategies and personal-
ized analysis of mobility patterns. The number of clusters is selected empirically
by evaluating the silhouette coefficient. For the dataset at hand, & = 7 is the con-
figuration that yields the highest silhouette score. Second, a configurable anchor
mechanism determines the reference point for next-Pol prediction. The default
configuration utilizes the penultimate rule (i = 1) while alternative strategies
supported by the system (first, middle, and explicit index) enable analysis of
the impact of anchor position on prediction quality. In particular, besides the
penultimate strategy, we also consider the middle one in the experiments, which
dynamically takes only the initial middle of the trajectory. Finally, distance-
based Pol ranking utilizes Haversine distance calculations to rank available Pols
by proximity to the current location, within a 2km walkable radius, with dynamic
filtering that excludes already visited Pols.
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5.2 Multi-Model Comparative Framework

The experimental framework is designed for systematic comparative analysis
across multiple Large Language Model (LLM) architectures. Building on the de-
scribed setup, we evaluate the accuracy of different LLMs and anchor strategies.
The experimental setup includes six open-source LLM architectures with varying
sizes and design principles. Llama 3.1 8B [22] is an 8-billion-parameter trans-
former released by Meta, instruction-tuned, namely fine-trained on data consist-
ing of instructions and corresponding responses, and capable of handling long
contexts up to 128k tokens. Qwen 2.5 7B and Qwen 2.5 14B are models from
Alibaba’s Qwen 2.5 [27], optimized for reasoning and instruction-following tasks,
namely to understand and respond appropriately to natural-language commands
and questions. Miztral §x7B [9], from Mistral Al, employs a sparse mixture-of-
experts design, wherein each transformer block contains multiple sub-networks
specialized in different types of inputs. Therefore, it can activate a subset of its 47
billion parameters per token to achieve strong performance at reduced computa-
tional cost. Mistral 7B [8], also from Mistral Al is an efficient dense model that
employs grouped-query and sliding-window attention to make attention faster
and more memory-efficient, especially for long contexts. Finally, DeepSeck Coder
33B [0] is a large-scale model designed for code understanding and generation,
offering strong generalization across various structured prediction tasks.

5.3 Results

The prediction capabilities of the six mentioned LLM models have been evalu-
ated with respect to all the prompt strategies described in Sect. by using a
real-world dataset of visits in Verona, a city in Northern Italy, from 2014 to 2023.
Overall, approximately 554,000 trajectories have been selected as relevant (see
T2 in Fig.. The obtained results across models, contextual prompt strategies,
and anchor point configurations (middle and penultimate), have also been com-
pared with respect to three baselines: random, which randomly chooses the next
Pol among the remaining ones, nearest, which always selects the nearest avail-
able Pol to the current location, and popular, which returns the most popular
Pol among the remaining ones.

Tab. 2] reports the obtained results under five prompt strategies that differ
in context, with the results evaluated using Acca1, H Ras, and M RR as evalua-
tion metrics. For each configuration, the average (AVG) and standard deviation
(STD) metrics values are reported for all VeronaCard predictions.

Overall, the obtained results indicate that the prompt strategy, which in-
tegrates tourist preferences through clustering (strategy E), achieves the best
performance across all models, in terms of Acca1, HRas, and M RR. For the
middle anchor point configuration, the Miztral 827B model attains the highest
top-1 accuracy (Acca; = 34.27), while the Qwen2.5 1/B model achieves the
best top-5 hit rate and mean reciprocal rank (HRas = 73.92, MRR = 49.01).
Under the penultimate anchor point configuration, Miztral 8z7B again deliv-
ers the best Accay (32.15), whereas Qwen2.5 1/B maintains its lead in H Ras



12 A. Dalla Vecchia et al.

Table 2. Results by model, prompt strategy, anchor point, and metric. BL = baseline,
LL8 = Llama3.1 8B, QW7 = Qwen2.5 7B, QW14 = Qwen2.5 14B, MX8 = Mixtral
8x7B, MS7 = Mistral 7B, DS33 = DeepSeek Coder 33B. For each configuration, the
average (AVG) and standard deviation (STD) of Top-1 accuracy (Accai1), Top-5 hit
rate (HRas), and Mean Reciprocal Rank (M RR) are reported. The highest values for
each metric are highlighted in bold.

Middle Penultimate
Accal HRas MRR Accal HRas MRR
Model Context AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

Random 5.22 22.24 26.05 43.89 11.9 24.93 5.65 23.09 28.19 44.99 12.88 25.69
BL Nearest 2.06 14.2 35.61 47.89 11.82 19.21 3.3 17.87 29.87 45.77 11.0 21.15
Popular 29.63 45.66 29.63 45.66 29.63 45.66 32.39 46.8 32.39 46.8 32.39 46.8

8.11 27.3 25.5 43.58 13.54 28.49 11.27 31.62 27.39 44.6 17.2 32.74
13.83 34.52 50.19 50.0 24.53 33.57 4.9 21.6 41.88 49.34 15.83 24.3
14.98 35.68 49.86 50.0 25.74 34.66 14.29 35.0 45.39 49.79 24.2 34.48
13.89 34.59 48.86 49.99 25.14 34.11 10.35 30.46 42.43 49.42 20.74 31.3
31.11 46.29 67.6 46.8 44.53 40.86 27.47 44.64 57.99 49.36 38.5 41.29
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and M RR (65.49 and 43.82, respectively). In general, comparing the two an-
chor point strategies, the middle configuration performs slightly better on av-
erage than the penultimate one, showing an average improvement of approxi-
mately 6.6% in Acca1, 12.9% in HRas, and 11.8% in M RR, suggesting that
aligning the prompt with the middle anchor point enhances model adaptabil-
ity to user preference patterns. The only exception is observed for Accqi under
the penultimate anchor point configuration, which marginally outperforms the
popularity-based baseline. Nevertheless, the difference is marginal, indicating
that employing LLMs with the clustering-based prompt strategy (E) remains
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generally preferable. Compared to baselines that rely only on the popularity of
the Pols, the nearest Pol, or random selection, all LLM-based models consis-
tently achieve higher performance, particularly in terms of HRqs and M RR,
highlighting the capability of LLM to better incorporate contextual and user-
specific information in the next-Pol prediction task.

Table 3. Average, minimum, and maximum computation time in seconds for each LLM
and prompt strategy. LL8 = Llama3.1 8B, QW7 = Qwen2.5 7B, QW14 = Qwen2.5
14B, MX8 = Mixtral 8x7B, MS7 = Mistral 7B, DS33 = DeepSeek Coder 33B.

Context LL8 QW7 QW14 MX8 MS7 DS33

Min (s)
A 0.762 0.299 0.927 0.844 0.532 0.545
B 0.685 0.128 0.762 0.249 0.505 1.196
C 0.550 0.567 0.831 0.969 0.713 1.516
D 0.173 0.778 0.200 0.179 0.179 1.472
E 0.553 0.711 0.981 0.977 0.724 0.183
Mean (s)
A 1.349 1.548 2.400 2.881 1.573 3.850
B 1.259 1.150 1.669 3.134 1.285 3.258
C 1.610 1.327 1.624 3.963 1.531 3.167
D 1.356 1.727 2479 4.270 1.876 4.306
E 1.478 1.769 2.632 4.576 2.184 5.401
Max (s)
A 8.801 28.308 12.974 179.685 12.317 174.371
B 8.509 73.986 25.250 586.100 11.672 279.573
(@] 32.028 76.691 13.608 504.931 11.135 103.022
D 60.572 9.017 164.247 245.922 77.656 260.507
E 9.107 9.363 39.187 265.486 13.146 25.463

Another important factor is the model response time under different prompt
strategies. Tab. |3| reports the minimum, mean, and maximum execution time in
seconds per prediction. The results show that, in general, as prompt complexity
and contextual information increase, average time rises slightly but remains ac-
ceptable. Larger models, such as Mixtral 8z7B and DeepSeek Coder 33B, exhibit
higher latency in worst-case scenarios, while richer contextual prompts boost
reasoning quality with only a modest rise in computation time.

Finally, to evaluate the decision-making processes and the argumentative
quality of the LLMs, a textual analysis was performed on the reason field. This
analysis focuses exclusively on predictions marked as success and containing a
non-null reason. Argumentative patterns were identified through heuristic key-
word matching, allowing the reasoning content to be classified into four main
semantic categories: geospatial reasoning (e.g., near, route, walk, meters), pop-
ularity reasoning (e.g., popular, famous, highlight, guidebook, important), time
reasoning (e.g., hour, before, when, late), and other, which includes the category
and logical reasoning. This classification provides a structured overview of the
reasoning strategies employed by each model, serving as the basis for the sub-
sequent comparative analysis. Fig. |3| illustrates the percentage distribution of
reasoning types for the clustering prompt strategy (E), which achieves the best
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performance according to Tab. 2] Geospatial reasoning dominates most models,
except DeepSeek Coder 33B, which favors time reasoning.
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Fig. 3. Percentage distribution of reasoning categories for the richer prompt strategy
(E) across models and anchor selection mechanism.

6 Conclusion

This work explored the potential of LLMs to understand and predict tourist
movements in a next-Pol prediction task through an incremental prompt strat-
egy, using a real-world tourist dataset from the municipality of Verona, Italy.

Experiments conducted across six different LLM models demonstrated that
progressively enriching the prompt with spatial, temporal, and preference in-
formation can significantly improve prediction accuracy compared to traditional
baselines. Qwen2.5 14B and Miztral 827B achieved the best overall results when
integrating the list of clustering preferences, suggesting that the middle anchor
point strategy better captures user behavior patterns. At the same time, the
reasoning analysis revealed that most LLMs primarily rely on geospatial reason-
ing, while temporal and popular reasoning play a secondary role, except for the
DeepSeek Coder 33B, which exhibits stronger temporal awareness.

Overall, our findings indicate that LLMs can serve as flexible, data-efficient
mobility interpreters capable of integrating heterogeneous contextual dimen-
sions. Future research will explore the integration of additional context sources,
such as weather conditions and real-time Pol crowding, to enhance personaliza-
tion, interpretability, and scalability in real-world tourist recommender systems.
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